$\qquad$

# C.U.SHAH UNIVERSITY <br> Winter Examination-2018 

## Subject Name: Linear Algebra

Subject Code: 5SC01LIA1
Semester: 1

Date: 26/11/2018

Branch : M.Sc. (Mathematics)

Time :02:30 To 05:30 Marks : 70

## Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

## SECTION - I

## Q-1 <br> Attempt the Following questions

a) If $v_{1}, v_{2}, \ldots \ldots \ldots v_{n}$ are in $V$ then either they are linearly independent or some $v_{k}$ is a linear combination of preceding one's $v_{1}, v_{2}, \ldots \ldots \ldots v_{k-1}$.
b) Let $V$ be finite dimensional over $F$ and $T \in A(V)$ show that the number of characteristic root of $T$ is atmost $n^{2}$.
c) If $A$ and $B$ are finite dimensional subspaces of a vector space $V$, then $A+B$ is finite dimensional and $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.
d) Define: Minimal Polynomial for $T$.

## Q-2 Attempt all questions

a) Let $V$ and $W$ be vector space over $F$ of dimension $m$ and $n$ respectively. Then prove that $\operatorname{HOM}(V, W)$ is of dimension $m n$ over $F$.
b) Let $V$ be a finite dimensional vector space over $\boldsymbol{F}$, and $W$ be a subspace of $V$ then $\widehat{W}$ is isomorphic to $\hat{V} \mid W^{\circ}$ and $\operatorname{dim} W^{\circ}=\operatorname{dim} V-\operatorname{dim} W$.

OR

## Q-2 Attempt all questions

a) Let $V$ be a finite dimensional vector space over $F$ and $W$ be subspace of $V$. Show that $W$ is finite dimensional , $\operatorname{dim} W \leq \operatorname{dim} V$ and $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.
b) State and prove Gram-Schmidth Orthonormalization process.
c) If $V$ is a finite dimensional inner product space and $W$ is subspace of $V$ then show that $W=\left(W^{\perp}\right)^{\perp}$

## Q-3 <br> Attempt all questions

a) Let $V$ be a finite dimensional vector space over $F$ and $S, T \in A(V)$.show that
i) $\quad \operatorname{rank}(S T) \leq \operatorname{rank}(T)$
ii) $\quad \operatorname{rank}(T S) \leq \operatorname{rank}(T)$
iii) If $S$ is regular then $\operatorname{rank}(S T)=\operatorname{rank}(T S)=\operatorname{rank}(T)$
b) Let $V$ be finite dimensional over $F$ and $T \in A(V)$. If $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots . \lambda_{k}$ in $F$ are
distinct roots of $T$ and $v_{1}, v_{2}, \ldots \ldots \ldots v_{k}$ are characteristic vector of $T$ corresponding to $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots . \lambda_{k}$ respectively. Then $v_{1}, v_{2}, \ldots \ldots \ldots . v_{k}$ are linearly independent.
c) Let $V$ be a finite dimensional vector space over $F$. If $T \in A(V)$ is right invertible then $T$ is invertible.

## OR

a) Let $V$ be a finite dimensional vector space over $F$ and $T \in A(V)$ be nilpotent then the invariants of $T$ are unique.
b) Let $V$ be a finite dimensional vector space over $F$ and $T \in A(V)$ and $W$ be subspace of $V$ invariant under $T$. Then $T$ induce a map $\bar{T}: V / W \rightarrow V / W$ defined by $\bar{T}(v+W)=T v+W$ show that $\bar{T} \in A(V / W)$. Further $\bar{T}$ satisfies every polynomial satisfies by $T$. If $p_{1}(x)$ and $p(x)$ are minimal polynomial for $\bar{T}$ and $T$ respectively then show that $p_{1}(x) / p(x)$.

## OR

## Attempt all questions

a) Let $V$ be a finite dimensional vector space over $F$ and $T \in A(V)$. Suppose that $V=V_{1} \oplus V_{2}$, where $V_{1}$ and $V_{2}$ are subspaces of $V$ invariant under $T$. Let $T_{1}=\left.T\right|_{V_{1}}$ and $T_{2}=\left.T\right|_{V_{2}}$. If the minimal polynomial of $T_{1}$ over $F$ is $p_{1}(x)$ while minimal polynomial of $T_{2}$ over $F$ is $p_{2}(x)$. Then show that minimal polynomial
of $T$ over $F$ is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.
b) Two nilpotent linear transformations are similar if and only if they have the same invariants.
c) Find the invariants of linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(y, 0,0)$, where $x, y, z \in R$.

## Q-6 Attempt all questions

a) Let $f: R^{n} \times R^{n} \rightarrow R$ be a map. Then $f$ is bilinear if and only if there exist $\alpha_{i j} \in$
$R, 1 \leq i, j \leq n$ with $\alpha_{i j}=\alpha_{j i}$ such that $f(x, y)=\sum_{i, j=1}^{n} \alpha_{i j} x_{i} y_{j}$.
b) Let $A, B \in M_{n}(F)$, show that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.
c) Interchanging two rows of matrix changes the sign of its determinant.

## OR

## Q-6 Attempt all Questions

a) State and prove Cramer's rule.
b) Identify the surface given by $11 x^{2}+6 x y+19 y^{2}=80$. Also convert it to the
standard form by finding the orthogonal matrix $P$.
c) Prove that determinant of lower triangular matrix is product of its entries on main diagonal.

