E	nrollme	ent No: Exam Seat No:	
		C.U.SHAH UNIVERSITY	
		Winter Examination-2018	
S	ubject N	Name: Linear Algebra	
S	ubject (Code: 5SC01LIA1 Branch : M.Sc. (Mathematics)	
S	emester	: 1 Date: 26/11/2018 Time :02:30 To 05:30 Marks : 70	
<u>I</u> 1	nstructio	ons:	
		Jse of Programmable calculator and any other electronic instrument is prohibited.	
		nstructions written on main answer book are strictly to be obeyed. Oraw neat diagrams and figures (if necessary) at right places.	
_		Assume suitable data if needed.	
_			
		SECTION – I	
Q-1			(07)
			(02)
		is a linear combination of preceding one's $v_1, v_2, \dots \dots v_{k-1}$. Let V be finite dimensional over F and $T \in A(V)$ show that the number of	(02)
	-	characteristic root of T is atmost n^2 .	(02)
			(02)
	•	finite dimensional and $\dim(A + B) = \dim A + \dim B - \dim(A \cap B)$.	/
			(01)
Q-2	ر.	Attempt all questions ((14)
			(07)
]	prove that $HOM(V, W)$ is of dimension mn over F .	
	b)	Let V be a finite dimensional vector space over F , and W be a subspace of V then	(07)
		\widehat{W} is isomorphic to $\widehat{V} W^{\circ}$ and dim $W^{\circ} = \dim V - \dim W$.	
		OR	
Q-2		Attempt all questions	(14)
	,		(06)
		that W is finite dimensional, $\dim W \leq \dim V$ and $\dim(V/W) = \dim V - \dim W$.	
	b)	State and prove Gram-Schmidth Orthonormalization process. ((05)

c) If V is a finite dimensional inner product space and W is subspace of V then

a) Let V be a finite dimensional vector space over F and $S, T \in A(V)$. show that

show that $W = (W^{\perp})^{\perp}$

Attempt all questions

Q-3

(03)

(14)

(06)

		i) $rank(ST) \le rank(T)$	
		ii) $rank(TS) \le rank(T)$	
		iii) If S is regular then $rank(ST) = rank(TS) = rank(T)$	
	b)	Let V be finite dimensional over F and $T \in A(V)$. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are	(05)
		distinct roots of T and v_1, v_2, \dots, v_k are characteristic vector of T	
		corresponding to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively. Then v_1, v_2, \dots, v_k are	
		linearly independent.	
	c)	Let V be a finite dimensional vector space over F. If $T \in A(V)$ is right invertible	(03)
		then <i>T</i> is invertible.	
		OR	
Q-3		Attempt all questions	(14)
	a)	If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a	(05)
		subalgebra of $A(V)$ for some vector space V over F .	
	b)	If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and	(05)
		only if the constant term in the minimal polynomial for T is nonzero.	
	c)		(04)
		linearly independent then $S(v_1), S(v_2), \dots S(v_n)$ are also linearly	
		independent.	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a)	Let F be a field of characteristic 0 and V be a vector space over F. If $S, T \in A(V)$	(02)
		such that $ST - TS$ commutes with S then show that $ST - TS$ is nilpotent.	
	b)	Prove that there do not exists $A, B \in M_n(F)$ such that $AB - BA = I$, where F is	(02)
		field with characteristic 0.	
	c)	Find the inertia of quadratic equation $2x_1x_2 + 2x_1x_3 = 0$.	(02)
	d)	Define: Invariant	(01)
Q-5		Attempt all questions	(14)
	a)	Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent then	(07)
	ŕ	the invariants of T are unique.	
	b)	Let V be a finite dimensional vector space over F and $T \in A(V)$ and W be	(07)
		subspace of V invariant under T. Then T induce a map $\overline{T}: V/W \to V/W$ defined	
		by $\overline{T}(v+W) = Tv + W$ show that $\overline{T} \in A(V/W)$. Further \overline{T} satisfies every	
		polynomial satisfies by T. If $p_1(x)$ and $p(x)$ are minimal polynomial for \overline{T} and T	
		respectively then show that $p_1(x)/p(x)$.	
		OR	
Q-5		Attempt all questions	(14)
	a)	Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose that	(05)
		$V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T . Let	
		$T_1 = T \Big _{V_1}$ and $T_2 = T \Big _{V_2}$. If the minimal polynomial of T_1 over F is $p_1(x)$ while	
		minimal polynomial of T_2 over F is $p_2(x)$. Then show that minimal polynomial	
		Page 2	of 2

		of T over F is the least common multiple of $p_1(x)$ and $p_2(x)$.	
	b)	Two nilpotent linear transformations are similar if and only if they have the same invariants.	(05)
	c)	Find the invariants of linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by	(04)
		$T(x, y, z) = (y, 0, 0)$, where $x, y, z \in R$.	
Q-6		Attempt all questions	(14)
	a)	Let $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a map. Then f is bilinear if and only if there exist $\alpha_{ij} \in$	(05)
		$R, 1 \le i, j \le n$ with $\alpha_{ij} = \alpha_{ji}$ such that $f(x, y) = \sum_{i,j=1}^{n} \alpha_{ij} x_i y_j$.	
	b)	Let $A, B \in M_n(F)$, show that $\det(AB) = \det A \cdot \det B$.	(05)
	c)	Interchanging two rows of matrix changes the sign of its determinant.	(04)
		OR	
Q-6		Attempt all Questions	(14)
	a)	State and prove Cramer's rule.	(05)
	b)	Identify the surface given by $11x^2 + 6xy + 19y^2 = 80$. Also convert it to the	(05)
		standard form by finding the orthogonal matrix P .	
	c)	Prove that determinant of lower triangular matrix is product of its entries on main	(04)
		diagonal.	

